Evaluating ∫ 0 π 2 (1 log (tan x) 1 1 − tan (x)) 3 d x Using the method shown here, I have found the following closed form ∫ 0 π 2 (1 log (tan x) 1 1 − tan x) 2 d x = 3 ln 2 − 4 π
(x^2+y^2-1)^3-Compute answers using Wolfram's breakthrough technology & knowledgebase, relied on by millions of students & professionals For math, science, nutrition, history "Now for x 2 y 22x4y=0 you can solve in another way You can add both sides with 5 and you 'll get x 2 y 2 2x 4y 5 = 5 and by factorizing you will end up in the form (x
(x^2+y^2-1)^3のギャラリー
各画像をクリックすると、ダウンロードまたは拡大表示できます
![]() | ![]() | |
![]() | ||
![]() | ![]() | ![]() |
![]() | ||